UK power

Price dynamics driving asset value

Briefing Pack Sep 2018

www.timera-energy.com

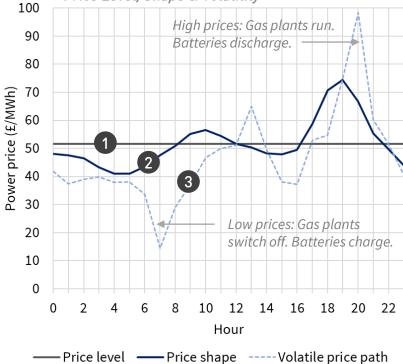
UK power – pricing & value: 5 key takeaways

- 1. **Pricing driving value:** Changes in Price Level, Shape & Volatility are altering asset risk/return profiles.
- 2. Value shift to prompt: Asset value capture from price movements near to delivery is increasing.
- 3. Shape & volatility to rise: Increase in the intermittency & steepness of the UK supply stack will drive up price shape & volatility in 2020s... 'wind trumps batteries'.

Heat map: margin contribution of Level, Shape & Volatility

	CCGTs	Merchant Wind & Solar	Engines/ GTs	Batteries
Price Level	3	2	5	5
Price Shape	4	5	3	4
Price Volatility	4	5	2	1

Notes: 1 = dominant margin driver, 5 = lower margin impact.

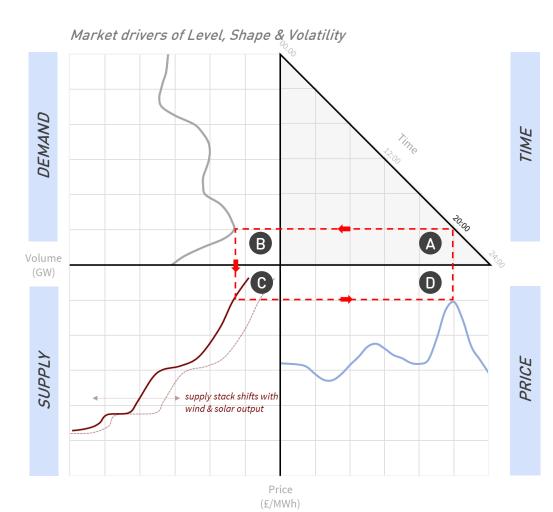

- **4. Value impact differs by asset:** The margin contributions of Level vs Shape vs Volatility vary widely across asset classes (see table). Owner/investor ability to value & manage different price exposures is key.
- 5. Capturing value is inherently more challenging: Investment cases & business models are evolving to reflect the greater complexity of capturing and financing value from shape & volatility.

OTIMERAENERGY

3 key price dynamics drive asset value

	Price Dynamic	Description	Drivers
1	Level	Baseload price	Variable cost of marginal price setting units (gas dominant).
2	Shape	Structural intraday price profile	Structural load, wind & solar profiles. Stack shape.
3	Volatility	Short-term price fluctuations	Fluctuations in load, wind & solar. Stack shape.

Price Level, Shape & Volatility

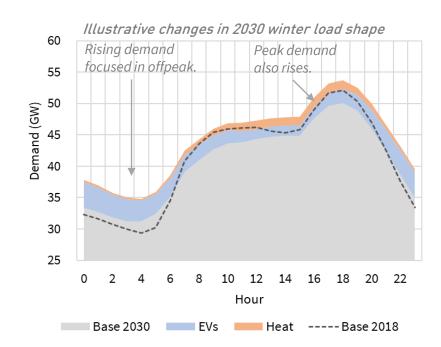

O TIMERAENERGY

Price formation dynamics

The interaction between load, supply stack and price is illustrated in the diagram.

- A For a given time of the day (e.g. 20:00)...
- B System demand is determined by factors such as weather...
- The positioning of the supply stack to meet that demand depends on prevailing wind & solar output...
- D The marginal unit required to meet demand drives system price.

Volatility is driven primarily by fluctuations in load (e.g. weather) & supply stack (e.g. wind/solar & outages).


Key market trend 1: Changing load

Drivers:

- 1. Efficiency measures.
- 2. Penetration of smart appliances/software.
- 3. Electrification of transport (EVs).
- 4. Electrification of heat.

Impact:

- Rising demand.
- Shifting load shape.

Drivers	Demand impact	Load shape impact	Description
Efficiency	¥	¥	Reduces demand & shape. Lack of clear policy incentives.
Smarts	¥	Ļ	Reduces demand & shape. Strong external technology drivers.
EVs	↑	↑↓	Increases demand. Shape depends on battery optimisation.
Heat	↑	↑	Increases demand & shape. Major barriers to deployment.

OTIMERAENERGY

Key market trend 2: Rising intermittency

Drivers:

- Growth in wind (30-40* GW by 2030). Large/rapid/uncertain swings in volume.
- Growth in solar (20-30* GW by 2030). More predictable daily/seasonal profile.

Impact:

- Greater supply stack fluctuations & price volatility.
- Changing intraday price shape (particularly solar profile).

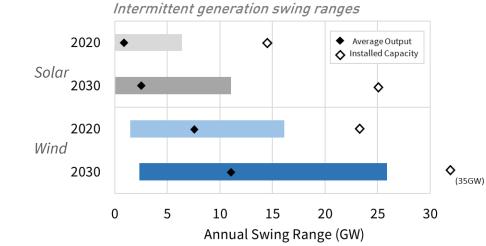


Chart shows annual volume range of low (5th percentile) to high (95th percentile) wind & solar output in 2020 vs 2030 (assuming 25GW solar, 35GW wind by 2030). Illustrates increasing impact of wind/solar in shifting supply stack left and right.

Chart shows intraday swing ranges (5% - 95%) of wind & solar output. For example by 2030, a low swing range for wind across a given day is 2GW vs high swing range of 17GW. Wind swing is somewhat larger and much less predictable than solar.

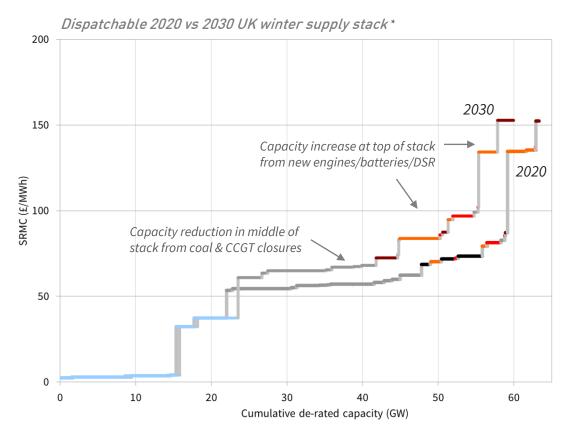
*Note: wind & solar capacity ranges reflect uncertainty in policy support & technology cost reduction (2018 – 2030).

6

UK power price dynamics

& asset value

Sep 18


Key trend 3: Steeper supply stack

Drivers:

- 1. Top of stack rises as higher variable cost engines/batteries/DSR replace CCGTs/coal.
- 2. Bottom of stack falling as zero/negative variable cost wind & solar penetration rises.

Impact:

- Greater price shape.
- Rising price volatility.

*Chart shows dispatchable supply stack (i.e. includes biomass, nuclear, gas, coal and storage but excludes wind & solar).

Net impact 1: Price shape rises

A. Peak prices rise

- Coal/CCGT closures pulling new peaking flex sources onto the margin (engines, batteries, DSR).
- Variable cost of this new peaking ٠ flex is higher, lifting peak prices.
- Peak price shape changing with (i) shifting load shape & (ii) intraday wind/solar profiles.

B. Offpeak prices fall

- Higher wind & solar output (zero/negative SRMC) drags down offpeak prices.
- Gas price linkage remains dominant, but is gradually eroded over time.

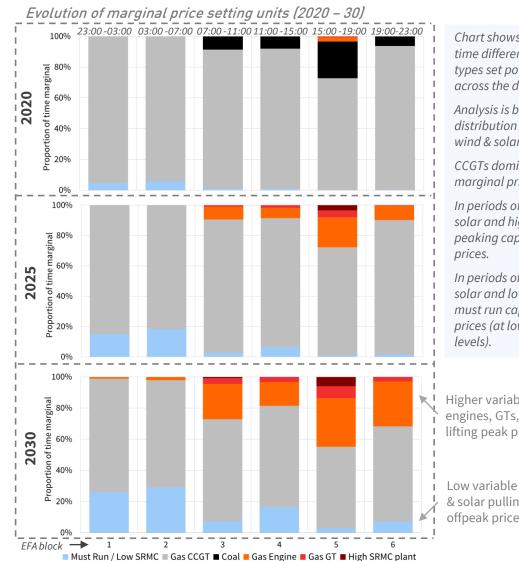


Chart shows the % of time different technology types set power prices across the day.

Analysis is built on a distribution of projected wind & solar output.

CCGTs dominate marainal price settina.

In periods of low wind & solar and high demand, peaking capacity sets

In periods of high wind & solar and low demand. *must run capacity sets* prices (at low or negative

Higher variable cost engines, GTs, batteries lifting peak prices.

Low variable cost wind & solar pulling down offpeak prices.

UK power price dynamics

& asset value

Sep 18

UK power

price

dynamics

& asset value

Sep

18

Net impact 2: Price volatility rises

A. Intermittent swings increase

- Rapid rise in wind & solar output increases supply stack fluctuations.
- E.g. ~17GW wind & ~14GW solar intraday swing ranges by 2030.

B. Stack steepens

- Steeping of supply stack increases price impact of wind/solar fluctuations.
- Output swings can tip market from negative prices to 100+ £/MWh in hours.
- Impact of shifting load shape & rising battery flex outweighed by intermittency.
- 'Wind trumps batteries' i.e. battery capacity (3-5GW by 2030) much smaller than wind/solar swing volumes.

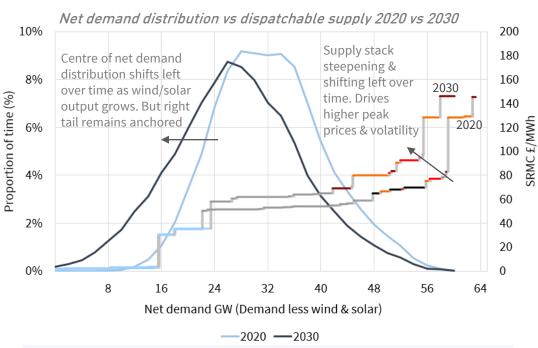


Chart shows projected distribution of net system demand (= load – wind – solar) overlaid on dispatchable supply stack (ex. wind & solar).

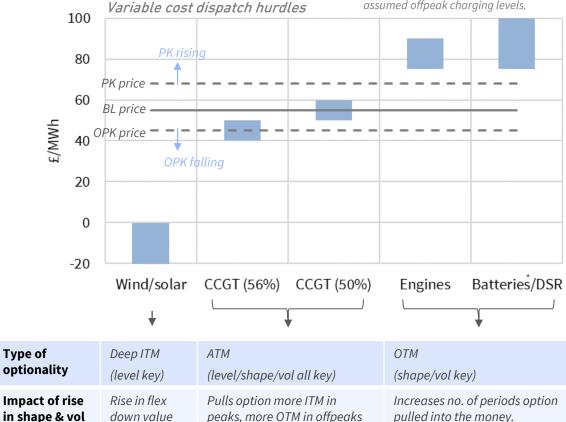
The chart illustrates the portion of time that different sections of the supply stack are required to clear net demand. E.g. high load & low wind/solar periods in the right tail of the distribution result in peaking units setting prices. Low load & high wind/solar periods in the left tail result in must run capacity setting zero/negative prices.

10

Sep 18

Rising shape & volatility: asset margin implications

Universal impact


- Drives asset value into prompt horizon.
- Increases value of asset optionality.
- Increases importance of extrinsic value capture.

Asset class impact

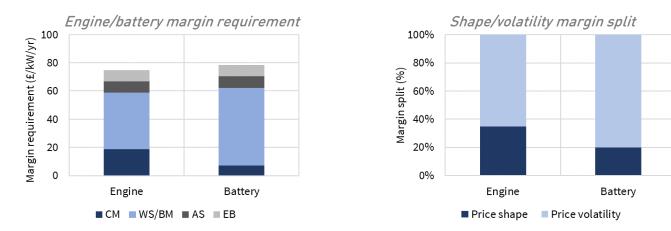
<u>Engines/Batteries</u>: Increases wholesale/BM margin capture.

<u>CCGTs</u>: Increases importance of shape & volatility versus price / spark spread level.

<u>Merchant wind/solar</u>: Increases value of option to flex down (2nd order impact).

*Battery dispatch is based on relative not absolute price signals. Hurdle estimate is dependent on degradation costs & assumed offpeak charging levels.

Note: ITM = 'in the money'. ATM = 'at the money'. OTM = 'out of the money'


UK power price dynamics & asset value

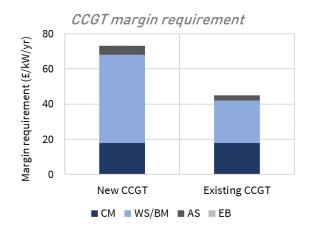
Sep 18

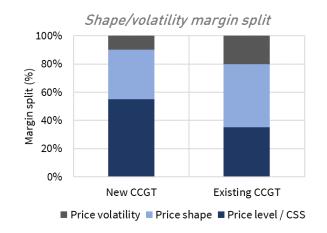
Value drivers & risks: **Engines & Batteries**

	Engines	Batteries
Value drivers	 Ability to capture shape & volatility value Variable dispatch cost hurdle (key for shape) Stacked AS, EB & CM margins 	 Ability to capture volatility value PK vs OPK arbitrage (efficiency/duration key) Stacked AS (FFR), EB & CM margins
Risks	 BM value erosion (e.g. battery/engine overbuild) New CCGT build (price & load factor erosion) Erosion of AS, EB & CM stacked margins 	 BM value erosion (e.g. battery/engine overbuild) Battery cycling degradation & mid-life capex Policy evolution (e.g. BM, CM, supplier charges)

Note: WS = Wholesale Market, BM = Balancing Mechanism, AS = Ancillary Services, EB = Embedded Benefits, CM = Capacity Market, FFR = Firm Frequency Response.

Note: Required margin does not represent Timera view on returns but is a summary of generic investment case numbers for given technologies (i.e. what you need to believe to invest).

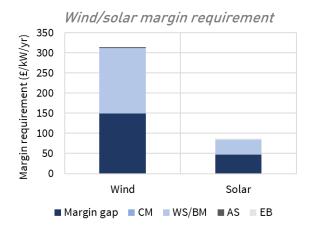

UK power price dynamics & asset value


Sep 18

Value drivers & risks: New & Existing CCGTs

	New CCGT (e.g. 56% efficient, 20 yr life)	Existing CCGT (e.g. 50% efficient, 10 yr life)
Key value drivers	 Variable cost advantage over other CCGTs Initial capex, capital structure & funding cost Ability to secure viable 15 yr capacity price 	 Asset capability to capture shape & volatility Reliability, O&M and timing/cost of major maint. Unique advantage (e.g. location, flex, CHP)
Key risks	 Peak spark spread erosion (e.g. other new CCGTs) Offpeak spread & load factor erosion (wind/solar) Adequate paydown of capex in first 5 years 	 Scale/pace of peak spark spread erosion Value erosion from price shape & volatility Structurally low capacity prices

Note: Required margin does not represent Timera view on returns but is a summary of generic investment case numbers for given technologies (i.e. what you need to believe to invest).



UK power price dynamics & asset value

Value drivers & risks: Merchant wind & solar

	Merchant wind	Merchant solar
Key value drivers	 Baseload power prices Capture price (erosion vs baseload) Capital structure & funding cost 	 Peak power prices Capture price (erosion vs peak price) Capital structure & funding cost
Key risks	 Structurally lower NBP gas prices Correlated wind driven price cannibalization Regulatory risk (e.g. CM reform, other support) 	 Structurally lower NBP gas prices Erosion of peak price shape (e.g. by solar) Regulatory risk (e.g. CM reform, other support)

Raising capital for merchant renewables

Developers are starting to test merchant projects with equity investors & lenders.

Key challenge is defining a robust downside level for wholesale power prices. This can be done as a function of:

- Robust gas price downside case.
- Distribution analysis of wind/solar price 2. erosion over time (see previous slides).

Note: Required margin does not represent Timera view on returns but is a summary of generic investment case numbers for given technologies (i.e. what you need to believe to invest).

Sep 18

Key challenges: Asset value capture

5 key challenges

- 1. **Prompt value:** Quantifying & managing asset exposure to price shape & volatility.
- 2. Liquidity: Lack of liquid granular products to hedge shape & volatility.
- **3. Transaction costs:** value erosion from execution of hedging & optimisation.
- 4. Risk adjustment: Appropriate discounting of uncertain revenue streams.
- 5. Pricing options: Structured probabilistic framework to define, price & exercise asset optionality across WS, BM, AS & EB markets.

WS/BM value management for flexible assets

Energy margin

value capturable

CCGT

Gas engine

attery

m

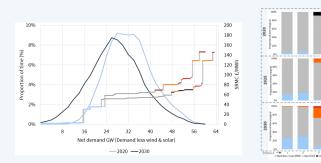
0, 0		
Forward mkts [~60%]	<u>Prompt</u> [~30%]	<u>Bal Mech</u> [<10%]
Some forward intrinsic value (e.g. winter, pks)	DA auction drives optimised schedule	Focus on bid/offer acceptances in BM
Hedging strategy influenced by mkt conditions, costs	Additional extrinsic value capture from price volatility	Strategy influenced by gate-closure position (typically lower value)

Energy margin			
Forward mkts [0%]	<u>Prompt</u> [e.g. 30-50%]	<u>Bal Mech</u> [e.g. 50-70%]	
No forward intrinsic value	Lock in positive margin in DA auction	Focus on capturing cash out price value	
Energy margin capture focused on prompt, increasing margin risk	Dispatch & hedges can be adjusted within day (lower value)	Risk from cashout forecast error and value erosion	
Energy margin			
Forward mkts [0%]	<u>Prompt [~20%]</u>	<u>Bal Mech [<~80%]</u>	
No forward intrinsic	DA auction drives	NIV chasing & BM. Risk	

initial optimised schedule. Further Energy margin capture extrinsic value capture focused on prompt. from intraday volatility increasing margin risk

from cashout forecast error and value erosion. More value from intermittency & cashout reform

UK power price dynamics & asset value Sep


Key challenges: Raising capital & analysing value

	Engines & Batteries	CCGTs	Merchant wind & solar
Challenges in raising capital	 Quantifying a realistic distribution of margin capture from price shape/volatility 	 Developing a realistic case for sustainable inframarginal rents across a long payback period 	• Establishing a 'bankable' lower bound for wholesale power prices (via gas market)

Analytical challenge: 2 part analytical framework key to supporting robust asset investment & value management decisions

1. Market modelling

Supply stack modelling needs to capture the evolving impact of wind/solar and load distributions & associated uncertainty. Robust modelling of swings in wind/solar/load and changing stack shape, drive realistic projections of price level, shape & volatility.


Probabilistic framework required to generate robust projection of asset risk/return and the value of optionality. Stochastic modelling of price dynamics & asset dispatch underpins margin distribution analysis.

1. Stochastic price simulation

2. Dispatch optimisation

3. Distribution of asset risk/return

15

Timera Energy offers expertise on value & risk in energy markets

Specialist energy consultancy

Focus on LNG and European gas & power assets

Extensive industry expertise *Practical knowledge from senior industry roles*

Pragmatic commercial focus *Investment, valuation, contracting & mkt analysis*

Strong client base *leading energy companies (producers, utilities, funds)*

Leading industry blog 15,000+ regular readers, publications, conferences

Relevant recent UK power credentials

Project	Client	Summary
Peaker acquisition	Fund	Market analysis, asset valuation & due diligence to support bid for UK peaker portfolio.
Peaker investment	Utility	Analysis of relative economics of gas engines vs OCGT vs battery investment options.
CCGT investment	PE Fund	Valuation & investment advice to support acquisition of portfolio of UK gas assets.
Flex management	Supplier	Advice on how to structure route to market contracts to support peaking flex services.
Value management	Generator	Support for development of hedging & risk management strategy for CCGT portfolio.
Margin strategy	IPP	Advice on gas plant margin strategy, including impact of contracting on risk/return.
Market access	Generator	Advising UK portfolio generator on R2M contract structure & counterparty selection.
EfW investment	Fund	Margin analysis and asset valuation to support bid for UK EfW portfolio.
Market analysis	Fund	Analysis of UK power market evolution & impact of peaker & battery roll out.

Timera Energy power team members

Our team members have extensive senior industry experience and practical commercial knowledge.

Phil Robinson

15+ years power industry experience (E.ON, EDF, Calon) Expert in value & risk management of power assets Former commercial head of Calon Energy

Olly Spinks

20 years energy industry experience Expert in commercial and risk analysis Ran BP's LNG, gas & power commercial analytics function

Emilio Viudez-Ruido

15 years experience in European gas & power markets Strong expertise in market modelling & margin analysis Expert in deconstruction & analysis of asset exposures

David Stokes

20 years energy/commodity market experience Expert in value/risk management of flexible assets Industry roles with Origin, Williams, JP Morgan

Nick Perry

30+ years industry experience (Amoco, Exxon, Enron) Expert in commercial & risk management strategy Board level experience (Enron Europe, Teesside Power)

Henry Crawford

8 years experience in energy & capital markets Strong commercial & market analytics experience Industry trading & analytics background (Nova Energy) Phil Robinson Director UK Power

phil.robinson@timera-energy.com +44 (0) 7734 413 702

Address: Tel: 110 Bishopsgate, London, EC2N 4AY, UK +44 (0) 207 961 0805

www.timera-energy.com
